Objectes multimèdia amb l’etiqueta: Teoria de nombres
Resultats de la cerca
Bernouilli numbers, Eisenstein series and cyclotomic units
Accés obert
6 de març 2019
I will recall what are the objects of the title and explain how one can combine them in a new way to
explain a deep Theorem of Mazur and Wiles (proving a conjecture of Iwasawa) that gives a formula
for the cardinality of the p-part of the class groups of cyclotomic fields in terms of Bernouilli numbers.
"The project leading to this talk has received funding from the European Research Council (ERC)(obriu en una finestra nova) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 682152): Euler systems and the conjectures of Birch and Swinnerton-Dyer and Block-Kato"
explain a deep Theorem of Mazur and Wiles (proving a conjecture of Iwasawa) that gives a formula
for the cardinality of the p-part of the class groups of cyclotomic fields in terms of Bernouilli numbers.
"The project leading to this talk has received funding from the European Research Council (ERC)(obriu en una finestra nova) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 682152): Euler systems and the conjectures of Birch and Swinnerton-Dyer and Block-Kato"
Vincles conceptuals entre els tres problemes metalògics de Hilbert. Jornada Hilbert (Curs 2017-2018)
Accés obert
28 de febr. 2018
Josep Pla i Carrera és professor emèrit de la Facultat de Matemàtiques i Informàtica de la UB, especialista en lògica i en història de la matemàtica. El curs 2006-2007, amb motiu de la seva jubilació, la Facultat de Matemàtiques i Estadística de la UPC el distingí amb el títol de Magister Honoris Causa.
Va iniciar la carrera docent el curs 1969-1970 a la UB i també va ser un dels primers professors de matemàtiques de la Universitat Autònoma de Barcelona (UAB), que tot just naixia. L’any 1975 va defensar la seva tesi doctoral —la primera de l’àmbit de matemàtiques escrita en català—, Contribució a l’estudi de les estructures algebraiques dels sistemes lògics deductius—, que va obtenir la màxima qualificació.
Des de llavors ha dedicat tota la seva vida professional a la recerca i a la docència a la UB, exercint també diversos càrrecs acadèmics a la facultat. Fins a mitjan anys 80 va treballar en el camp de la lògica algebraica, però a partir de llavors va submergir-se en la història de la matemàtica, estudiant-la en profunditat i ensenyant-la als seus alumnes. És autor de diverses obres i articles especialitzats i també ha publicat articles de divulgació adreçats a estudiants i professors de matemàtiques. Dins de la seva obra destacaran sempre els estudis crítics sobre les grans ments matemàtiques universals i les seves contribucions a la didàctica de la història de les matemàtiques en llengua catalana.
Es tracta de presentar un concepte que, d’alguna manera, unifica problemes que, en una primera lectura, podria semblar que no tenen res a veure. I fer-ho basant-nos en els resultats obtinguts entre 1931 i 1971 pels matemàtics que els van estudiar: Gödel, Turing, Post, Davis, J. Robinson, Matiasevick, A. Levy.
Va iniciar la carrera docent el curs 1969-1970 a la UB i també va ser un dels primers professors de matemàtiques de la Universitat Autònoma de Barcelona (UAB), que tot just naixia. L’any 1975 va defensar la seva tesi doctoral —la primera de l’àmbit de matemàtiques escrita en català—, Contribució a l’estudi de les estructures algebraiques dels sistemes lògics deductius—, que va obtenir la màxima qualificació.
Des de llavors ha dedicat tota la seva vida professional a la recerca i a la docència a la UB, exercint també diversos càrrecs acadèmics a la facultat. Fins a mitjan anys 80 va treballar en el camp de la lògica algebraica, però a partir de llavors va submergir-se en la història de la matemàtica, estudiant-la en profunditat i ensenyant-la als seus alumnes. És autor de diverses obres i articles especialitzats i també ha publicat articles de divulgació adreçats a estudiants i professors de matemàtiques. Dins de la seva obra destacaran sempre els estudis crítics sobre les grans ments matemàtiques universals i les seves contribucions a la didàctica de la història de les matemàtiques en llengua catalana.
Es tracta de presentar un concepte que, d’alguna manera, unifica problemes que, en una primera lectura, podria semblar que no tenen res a veure. I fer-ho basant-nos en els resultats obtinguts entre 1931 i 1971 pels matemàtics que els van estudiar: Gödel, Turing, Post, Davis, J. Robinson, Matiasevick, A. Levy.
Emmy Noether: de l'àlgebra no commutativa a la teoria de nombres. Curs Noether (2008-2009)
Accés obert
6 de maig 2009
En la producció d’EmmyNoetherse solen distingir tres períodes:
del 1908 al 1919 en què es dedicà a la teoria d'invariants, teoria de Galois i càlcul de variacions; del 1920 al 1926 en què el seu estudi se centrà en els anells commutatius i la teoria d'ideals; i del 1927 al 1935 en què el seu treball tingué com a eixos principals els sis temes hipercomplexos i la representació de grups.
En la nostra presentació parlarem d’aquest tercer període i del seu impacte en teoria de nombres. Noether ho resumiria així: la repercussió de la no commutativitat en la commutativitat.
del 1908 al 1919 en què es dedicà a la teoria d'invariants, teoria de Galois i càlcul de variacions; del 1920 al 1926 en què el seu estudi se centrà en els anells commutatius i la teoria d'ideals; i del 1927 al 1935 en què el seu treball tingué com a eixos principals els sis temes hipercomplexos i la representació de grups.
En la nostra presentació parlarem d’aquest tercer període i del seu impacte en teoria de nombres. Noether ho resumiria així: la repercussió de la no commutativitat en la commutativitat.
Hamilton y la teoría de Galois. Curs Gauss (2005-2006)
Accés obert
8 de març 2006
Indudablemente uno de los legados más importantes de Hamilton es la
rama de la teoría de ecuaciones diferenciales que en honor a su nombre
se denomina Sistemas Hamiltonianos. Ejemplos de sistemas Hamiltonianos
son la práctica totalidad de los sistemas de la Mecánica Clásica: los
problemas del movimiento de los cuerpos celestes o de las partículas
cargadas sometidas a campos electromagnéticos. Además, la formulación
más usual de la Mecánica Cuántica -que controla la dinámica de la
física atómica- se hace en forma Hamiltoniana, mediante un
procedimiento llamado cuantización del Sistema Hamiltoniano clásico
correspondiente. Entre los múltiples problemas de investigación en la
teoría actual de Sistemas Hamiltonianos aquí nos centraremos en el de
la Integrabilidad que “grosso modo” trata de responder a la pregunta de
si podemos resolver explícitamente las ecuaciones de Hamilton.
Sorprendentemente esta cuestión está relacionada con otras ramas
profundas de la matemática aparentemente alejadas de la teoría de
Sistemas Hamiltonianos, como la teoría de Galois.
rama de la teoría de ecuaciones diferenciales que en honor a su nombre
se denomina Sistemas Hamiltonianos. Ejemplos de sistemas Hamiltonianos
son la práctica totalidad de los sistemas de la Mecánica Clásica: los
problemas del movimiento de los cuerpos celestes o de las partículas
cargadas sometidas a campos electromagnéticos. Además, la formulación
más usual de la Mecánica Cuántica -que controla la dinámica de la
física atómica- se hace en forma Hamiltoniana, mediante un
procedimiento llamado cuantización del Sistema Hamiltoniano clásico
correspondiente. Entre los múltiples problemas de investigación en la
teoría actual de Sistemas Hamiltonianos aquí nos centraremos en el de
la Integrabilidad que “grosso modo” trata de responder a la pregunta de
si podemos resolver explícitamente las ecuaciones de Hamilton.
Sorprendentemente esta cuestión está relacionada con otras ramas
profundas de la matemática aparentemente alejadas de la teoría de
Sistemas Hamiltonianos, como la teoría de Galois.
- ← Anterior
- 1 (current)
- Següent →