Objectes multimèdia amb l’etiqueta: Enginyeria mecànica general

Resultats de la cerca

Campus Diagonal-Besòs - Escola d’Enginyeria de Barcelona Est (EEBE)

Accés obert
12 de set. 2016
L'Escola d'Enginyeria de Barcelona Est (EEBE) inicia el curs acadèmic amb uns 3.500 estudiants de grau, màster i doctorat, i uns 400 docents i investigadors. Ubicada a la cruïlla dels carrers Sant Ramon de Penyafort i Eduard Maristany, l’EEBE és el nucli principal del nou Campus Diagonal-Besòs, situat en una zona en creixement, entre Barcelona i Sant Adrià de Besòs.

L’EEBE vol esdevenir un centre acadèmic d’alta qualitat en l’àmbit de l’enginyeria per a la indústria del segle XXI, capaç d’actuar com a agent de transformació, en col·laboració amb el teixit socioeconòmic del país, i amb una clara vocació internacional. L’EEBE neix a partir de l’Escola Universitària d’Enginyeria Tècnica Industrial de Barcelona (EUETIB) -l’antiga escola del Carrer Urgell-, un centre que fins a la seva integració a la UPC depenia del Consorci Escola Industrial de Barcelona, i d’una part de l’activitat docent i de recerca vinculada als àmbits de l’enginyeria química i de materials que fins ara es portaven a terme a l’Escola Tècnica Superior d’Enginyeria Industrial de Barcelona (ETSEIB)

Introducció a la dinàmica de sistemes multisòlid i aplicacions

Accés obert
27 de nov. 2009
La dinàmica de sistemes multisòlid és una disciplina que permet simular, mitjançant ordinador, el
moviment de vehicles, màquines i mecanismes amb un alt grau de detall. En primer lloc, es realitza el
model físic del sistema que s’ha de simular, i es decideix el grau de simplificació de la realitat que
s’adopta i les teories que s’apliquen per a representar els diferents fenòmens mecànics que hi
apareixen: flexibilitat, contacte, etc. En segon lloc, s’elabora el model matemàtic del sistema, és a dir,
la selecció de coordenades que en representen la configuració al llarg del temps (existeixen diferents
famílies de coordenades ja establertes, i l’elecció d’unes o altres depèn de l’aplicació concreta). En
tercer lloc, es formulen les equacions del moviment i s’obtenen tots els termes cinemàtics i dinàmics
que hi intervenen. En quart lloc, se selecciona l’integrador numèric que proporciona la solució de les
equacions del moviment al llarg del temps. Tot això s’ha d’implementar en un cert llenguatge de
programació, com per exemple Fortran, C++ o Matlab, o en combinacions entre ells. Els cinc aspectes
indicats es troben fortament relacionats, de manera que l’elecció d’un condiciona fortament els altres.
Mitjançant aquesta tècnica es poden realitzar simulacions de sistemes tan complexos i realistes com
automòbils, trens, excavadores, robots o el mateix cos humà.

Tractament de senyals cinemàtics i de masses de teixit tou enl’anàlisi dinàmica inversa de models biomecànics

Accés obert
27 de nov. 2009
L’anàlisi dinàmica inversa (ADI) s’utilitza per a calcular les forces i els moments que intervenen en el
moviment d’un sistema mecànic quan el moviment d’aquest sistema és conegut. En les últimes dècades,
aquest tipus d’anàlisi s’ha aplicat àmpliament en el camp de la biomecànica. L’objectiu és obtenir
informació quantitativa sobre la cinemàtica, la dinàmica i el comportament mecànic del sistema
musculoesquelètic durant l’execució d’un determinat moviment o activitat física. Per a realitzar l’ADI,
cal modelitzar el cos humà com un sistema mecànic format per sòlids rígids enllaçats per parells
cinemàtics, i adquirir-ne la cinemàtica per mitjà d’un sistema de captura del moviment. Existeixen
diferents fonts d’error que afecten el resultat d’aquesta anàlisi. Una manera senzilla de comprovar-ho
consisteix a comparar les forces de reacció amb el terra calculades mitjançant l’ADI amb les
mesurades per una placa de força. Aquesta discrepància entre les magnituds observables generades pel
sistema biològic real i les calculades mitjançant l’ADI del model biomecànic es coneix com a «problema
fonamental de la dinàmica inversa mioesquelètica». Aquest problema apareix per causa d’una sèrie
d’inconsistències entre la dinàmica del sistema real i la que s’obté simulant el sistema biomecànic. Hi
destaquen tres fonts d’error: el soroll que introdueix el mateix sistema de captura del moviment, el
moviment de la pell respecte al sistema esquelètic i l’efecte del moviment de les masses de teixit tou.
Es presenta un procediment sistemàtic per a tractar de manera integrada aquestes tres fonts d’error,
i l’objectiu és millorar els resultats de l’ADI de sistemes biomecànics processant els senyals cinemàtics
adquirits.