Objectes multimèdia amb l’etiqueta: Matemàtiques i estadística general
Resultats de la cerca
Acte de lliurament de la 16a edició Premi Poincaré 2019. Curs Kovalevskaya (2018-2019)
Accés obert
10 de maig 2019
Sofía Kovalevskaya: recuerdos de infancia. Jornada Kovalevskaya (Curs 2018-2019)
Accés obert
6 de març 2019
Lliurament premis als guanyadors del Concurs Kovalevskaya. Jornada Kovalevskaya (Curs 2018-2019)
Accés obert
6 de març 2019
La fascinante vida de Sonia Kovalévskaya. Jornada Kovalevskaya (Curs 2018-2019)
Accés obert
6 de març 2019
Sonia Kovalévskaya fue una matemática rusa del siglo XIX, que para poder estudiar en la universidad tuvo que salir fuera de Rusia, pedir permisos especiales para asistir a clase y solicitar clases particulares a ilustres matemáticos. Después de obtener el doctorado en Matemáticas, a pesar de que ninguna universidad en Europa admitía a una mujer como profesora, consiguió serlo en la entonces recién creada Universidad de Estocolmo.
Sus investigaciones se centran en el Análisis Matemático. Su nombre ha pasado a la historia por el Teorema de Cauchy-Kovaleskaya. Su especialización, por lo que en su época fue conocida en toda Europa, era la teoría de funciones abelianas. Su trabajo sobre los anillos de Saturno representa su aportación a la matemática aplicada. Su mayor éxito matemático fue su investigación sobre la rotación de un sólido alrededor de un punto fijo por el que obtuvo el Premio Bordin de la Academia de Ciencias de París. Su trabajo póstumo, una simplificación de un Teorema de Bruns.
Sus investigaciones se centran en el Análisis Matemático. Su nombre ha pasado a la historia por el Teorema de Cauchy-Kovaleskaya. Su especialización, por lo que en su época fue conocida en toda Europa, era la teoría de funciones abelianas. Su trabajo sobre los anillos de Saturno representa su aportación a la matemática aplicada. Su mayor éxito matemático fue su investigación sobre la rotación de un sólido alrededor de un punto fijo por el que obtuvo el Premio Bordin de la Academia de Ciencias de París. Su trabajo póstumo, una simplificación de un Teorema de Bruns.