Polarization is an unexploited property of light that provide us additional information in very diverse fields. Hence, in the last decade the concept of polarimetric imaging has risen as a powerful tool for plenty of applications such as remote sensing, medical diagnosis, astronomy, transport and surveillance… This communication presents the capability of a Division of Focal Plane (DOFP) camera jointly with active polarized illumination to improve the contrast when imaging a scene in turbid media such as fog. Due to the polarization memory effect, using polarization-gating method allows detecting embedded objects with a lower signal-to-noise ratio, and thus, higher contrast when propagating through scattering media. In addition, the polarization signature reflected by the objects depends on their nature, since the index of refraction modifies the polarization response. This allows distinguishing different materials such as metal and dielectric under active polarization imaging even in hazard conditions as fog.
Vídeos de la mateixa sèrie
Indices of polarimetric purity: application in biological tissues
Nuevo software para la comparación de gamas de color
Multispectral imaging of healthy and diseased red blood cells using confocal microscopy
Effective medium theories for nanocomposite characterization
Microscopio invertido con luz estructurada mediante DMD
investigación básica y aplicada en biomedicina o ingeniería. Muchas técnicas de
microscopía emplean luz estructurada junto con técnicas computacionales de
reconstrucción de imágenes. En este trabajo describimos un método de microscopía con
luz estructurada que consiste en acoplar un modulador espacial de luz basado en
microespejos (DMD, acrónimo de la expresión digital micromirror device) a un
microscopio invertido comercial. La fuente de iluminación es una lámpara con ancho de
banda en el visible. El mismo sistema de epi-iluminación del microscopio,
convenientemente desmontado, se utiliza para iluminar el DMD. Un sistema óptico
adicional proyecta los patrones luminosos codificados en el DMD sobre el diafragma de
campo del microscopio. Una cámara CCD convenientemente sincronizada actúa como
dispositivo fotodetector flexible. El objetivo principal del trabajo es validar tecnologías
asequibles para reconstruir imágenes con luz estructurada, realizar tomografía o lograr
otras mejoras en microscopía de fluorescencia. En particular, se desarrollarán técnicas
de imagen basadas en detección integrada con un solo píxel. También se explorarán
técnicas de microscopía de tipo SIM (structured illumination microscopy), que permiten
obtener seccionado óptico y resolución equiparables a las de la microscopía confocal.
Observation of transverse acoustic resonances in optical fibers using a long period grating
phenomenon that has been studied since mid-80s. It is produced when two
copropagating optical waves are scattered by transverse acoustic waves, generating
frequency shifts up to 1 GHz. These acoustic resonances can be excited by electrostriction
when an intense optical pulse propagates inside the fiber. Perturbations in the effective
index of the guided mode are generated through the photo-elastic effect, which typically
are detected by direct analysis of the scattered optical wave. Here we propose an
alternative observation method through the use of a long-period grating (LPG). LPGs
are fiber devices that couples light from the fundamental optical core mode to copropagating cladding modes. Their transmission spectra present several attenuation
notches corresponding to the excitation of different cladding modes that satisfy the
resonance condition. These resonance condition depend on the effective index of the
coupled core and cladding modes and is therefore sensitive to perturbations. The change
in transmission of the LPG becomes then an efficient method of interrogation for FSBS
in optical fibers. The linewidth of resonances was found to be much shorter than in
previous reports in which long fiber lengths are typically required
Imaging through fog: polarized light propagation modelling
of the up-to-date research questions in the field of navigation. Among different
approaches to solve this problem, the use of polarimetric imaging has been proposed.
The aim of this research is to present a polarized light propagation model based on
Monte-Carlo simulations and Mie Theory for its use as a tool to study the feasibility and
characteristics of polarized light detection techniques in these kinds of media. Studying
and obtaining the backscattering Mueller matrix for a turbid environment allows to
completely characterize the backscattering characteristics of the media. Thus, it may be
used to select the combination of polarization components more useful for each
situation. On the other hand, it has been seen that when light first interact with fog,
generated backscatter directly blinds the sensor of the imaging device and hides
reflected signals of objects being imaged. Using a time-resolved variant of the model, it
has been possible to characterize the shape and the influence of the temporal response
of a backscattered light pulse, concluding that, apart from the greater light extinction in
a more scattering medium, media-backscattering and reflected-object signals are
independent
Nuevos métodos de diagnóstico médico basados en sistemas de imagen hiperespectral
en sistemas de imagen hiperespectral, con la que se pueden obtener 15 imágenes
espectrales a diferentes longitudes de onda del espectro visible (VIS) y del infrarrojo
cercano (NIR) (400nm a 1300nm). Se han obtenido las imágenes de 38 pacientes de
edades entre 30 y 90 años y, posteriormente, se ha realizado un análisis
espectroscópico. Para cada imagen procesada del fondo de ojo se han extraído los
valores de reflectancia de cada estructura en función de la longitud de onda y de la
edad del paciente. De esta manera podemos estudiar las propiedades espectrales de las
sustancias que se encuentran en el fondo de ojo para la luz VIS y NIR.
Los resultados muestran que las longitudes de onda más cortas (<500nm) se reflejan
más superficialmente, lo cual nos permite obtener información de estructuras como el
disco óptico, las fibras nerviosas y la fóvea. Las longitudes de onda intermedias
(500nm-700nm) permiten observar con detalle los vasos sanguíneos de la retina, y
diferenciar las arterias de las venas. Finalmente, el uso de luz NIR permite observar
estructuras más profundas como la coroides y sus vasos, las cuales no podemos
observar con un retinógrafo convencional, debido a la alta absorbancia de la melanina
a la luz VIS. En conclusión, usar una cámara hiperespectral con longitudes de onda por
encima del VIS permite visualizar mejor algunas estructuras concretas y capas más
profundas así como obtener información espectroscópica de las mismas.
Polarization memory effect: imaging through scattering media
La iluminación en espacios docentes: análisis fotópico y melanópico.
En este estudio, se analiza tanto los efectos visuales como no visuales de la luz en cuatro espacios docentes con diferentes orientaciones. Se analiza cómo afecta a la iluminación la orientación de las ventanas, el estado del cielo, así como las características de cada aula (grado de reflexión de las superficies o localización de los puntos de cálculo). Para ello, se realizaron medidas experimentales desde el mes de octubre hasta el mes de marzo, y, a su vez, se simuló las aulas con el software Dialux Evo donde se ha conseguido que los valores simulados se asemejen a los valores experimentales.
Para finalizar, se hace una propuesta de mejora para optimizar la iluminación de las aulas contemplando los requisitos Human-Centric Lighting (HCL), asegurando que los usuarios que pasen por esas aulas tengan la cantidad adecuada de iluminación a cualquier hora del día.