Objectes multimèdia amb l’etiqueta: Facultat de Matemàtiques i Estadística
Resultats de la cerca
Bernouilli numbers, Eisenstein series and cyclotomic units
Accés obert
6 de març 2019
I will recall what are the objects of the title and explain how one can combine them in a new way to
explain a deep Theorem of Mazur and Wiles (proving a conjecture of Iwasawa) that gives a formula
for the cardinality of the p-part of the class groups of cyclotomic fields in terms of Bernouilli numbers.
"The project leading to this talk has received funding from the European Research Council (ERC)(obriu en una finestra nova) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 682152): Euler systems and the conjectures of Birch and Swinnerton-Dyer and Block-Kato"
explain a deep Theorem of Mazur and Wiles (proving a conjecture of Iwasawa) that gives a formula
for the cardinality of the p-part of the class groups of cyclotomic fields in terms of Bernouilli numbers.
"The project leading to this talk has received funding from the European Research Council (ERC)(obriu en una finestra nova) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 682152): Euler systems and the conjectures of Birch and Swinnerton-Dyer and Block-Kato"
Una excursión por los sistemas integrables, alrededor de Sofia Kovalevskaya. Jornada Kovalevskaya (Curs 2018-2019)
Accés obert
6 de març 2019
En la charla presentaré, sobre el telón de fondo de la historia de la idea de integrabilidad para los sistemas mecánicos durante el S. XIX, las contribuciones de Sofia Kovalewska a ese tópico, centradas en su análisis de la rotación de un (caso particular de) cuerpo solido alrededor de un punto fijo, análisis por el que obtuvo el premio Bordin de la Academia Francesa de Ciencias. A pesar del título aparentemente modesto del artículo en que tal análisis se publicó, el trabajo de Kovalewskaya es brillante y en él están implícitamente contenidas algunas de las ideas y técnicas que han sido objeto de desarrollo posterior durante el S. XX.
La fascinante vida de Sonia Kovalévskaya. Jornada Kovalevskaya (Curs 2018-2019)
Accés obert
6 de març 2019
Sonia Kovalévskaya fue una matemática rusa del siglo XIX, que para poder estudiar en la universidad tuvo que salir fuera de Rusia, pedir permisos especiales para asistir a clase y solicitar clases particulares a ilustres matemáticos. Después de obtener el doctorado en Matemáticas, a pesar de que ninguna universidad en Europa admitía a una mujer como profesora, consiguió serlo en la entonces recién creada Universidad de Estocolmo.
Sus investigaciones se centran en el Análisis Matemático. Su nombre ha pasado a la historia por el Teorema de Cauchy-Kovaleskaya. Su especialización, por lo que en su época fue conocida en toda Europa, era la teoría de funciones abelianas. Su trabajo sobre los anillos de Saturno representa su aportación a la matemática aplicada. Su mayor éxito matemático fue su investigación sobre la rotación de un sólido alrededor de un punto fijo por el que obtuvo el Premio Bordin de la Academia de Ciencias de París. Su trabajo póstumo, una simplificación de un Teorema de Bruns.
Sus investigaciones se centran en el Análisis Matemático. Su nombre ha pasado a la historia por el Teorema de Cauchy-Kovaleskaya. Su especialización, por lo que en su época fue conocida en toda Europa, era la teoría de funciones abelianas. Su trabajo sobre los anillos de Saturno representa su aportación a la matemática aplicada. Su mayor éxito matemático fue su investigación sobre la rotación de un sólido alrededor de un punto fijo por el que obtuvo el Premio Bordin de la Academia de Ciencias de París. Su trabajo póstumo, una simplificación de un Teorema de Bruns.
Lliurament premis als guanyadors del Concurs Kovalevskaya. Jornada Kovalevskaya (Curs 2018-2019)
Accés obert
6 de març 2019
Una mirada al teorema de Cauchy-Kovalevskaya. Jornada Kovalevskaya (Curs 2018-2019)
Accés obert
6 de març 2019
La grandeza del teorema de Cauchy-Kovalevskaya reside en que es, en cierto sentido, el único teorema “general” de la teoría de ecuaciones en derivadas parciales. Su debilidad, en que únicamente se aplica al caso enormemente restrictivo de sistemas analíticos, es decir, determinados por una serie de potencias convergente. Se trata de un teorema extraordinario, inspirador e influyente, que va asociado al nombre de una matemática igualmente extraordinaria, inspiradora e influyente. En esta charla discutiremos los rasgos inusuales de este resultado y algunas de las ideas que se han extraído (y se siguen extrayendo) del mismo.
Sofía Kovalevskaya: recuerdos de infancia. Jornada Kovalevskaya (Curs 2018-2019)
Accés obert
6 de març 2019
Network geometry
Accés obert
28 de nov. 2018
M. Ángeles Serrano obtained her Ph.D. in Physics at the Universitat de Barcelona (UB) in 1999 with a thesis about gravitational wave detection. In 2000, she also received her Masters in Mathematics for Finance at the CRM-Universitat Autònoma de Barcelona. After four years in the private sector as IT consultant and mutual funds manager, Prof. Serrano returned to academia in 2004 to work in the field of Network Science. Subsequently, she was a researcher at Indiana University (USA), the École Polytechnique Fédérale de Lausanne (Switzerland), IFISC Institute (Spain), and held a Ramón y Cajal research associate appointment at UB until october 2015. The results of her investigations are summarized in major peer reviewed international scientific journals -including Nature, PNAS, PRL, ...-, book chapters, and conference proceedings. Prof. Serrano leads and participates in several research projects at the international and national levels. She is also actively involved in advising and research supervision. She serves in evaluation panels and program scientific committees, and acts as a reviewer in several international journals. In February 2009, she obtained the Outstanding Referee award of the American Physical Society. She is a Founder Member of Complexitat, the Catalan Network for the study of Complex Systems, and a Promoter Member of UBICS, the Universitat de Barcelona Institute of Complex Systems.
Networks are critical to understand human nature ---from genome to brain and society--- and our environment ---the Internet, food webs, international trade... ---, and are changing the way in which we model and predict complex systems in many different disciplines. Surprisingly, all complex networks talk a common language, regardless of their origin, and are imprinted with universal features. They are small-world, strongly clustered and hierarchical, modular, robust yet fragile, and may exhibit unexpected responses like cascades and other critical and extreme events.
Many of these fundamental properties are well explained by a family of hidden metric space network models that led to the discovery that the latent geometry of many real networks is hyperbolic. Hyperbolicity emerges as a result of the combination of popularity and similarity dimensions into an effective distance between nodes, such that more popular and similar nodes have more chance to interact. The geometric approach permits the production of truly cartographic maps of real networks that are not only visually appealing, but enable applications like efficient navigation and the detection of communities of similar nodes. Recently, it has also enabled the introduction of a geometric renormalization group that unravels the multiple length scales coexisting in complex networks, strongly intertwined due to their small world property.
Interestingly, real-world scale-free networks are self-similar when observed at the different resolutions unfolded by geometric renormalization, a property that might find its origin in an evolutionary drive. Practical applications of the geometric renormalization group for networks include high-fidelity downscaled network replicas, a multiscale navigation protocol in hyperbolic space that takes advantage of the increased navigation efficiency at higher scales, and many others.
Networks are critical to understand human nature ---from genome to brain and society--- and our environment ---the Internet, food webs, international trade... ---, and are changing the way in which we model and predict complex systems in many different disciplines. Surprisingly, all complex networks talk a common language, regardless of their origin, and are imprinted with universal features. They are small-world, strongly clustered and hierarchical, modular, robust yet fragile, and may exhibit unexpected responses like cascades and other critical and extreme events.
Many of these fundamental properties are well explained by a family of hidden metric space network models that led to the discovery that the latent geometry of many real networks is hyperbolic. Hyperbolicity emerges as a result of the combination of popularity and similarity dimensions into an effective distance between nodes, such that more popular and similar nodes have more chance to interact. The geometric approach permits the production of truly cartographic maps of real networks that are not only visually appealing, but enable applications like efficient navigation and the detection of communities of similar nodes. Recently, it has also enabled the introduction of a geometric renormalization group that unravels the multiple length scales coexisting in complex networks, strongly intertwined due to their small world property.
Interestingly, real-world scale-free networks are self-similar when observed at the different resolutions unfolded by geometric renormalization, a property that might find its origin in an evolutionary drive. Practical applications of the geometric renormalization group for networks include high-fidelity downscaled network replicas, a multiscale navigation protocol in hyperbolic space that takes advantage of the increased navigation efficiency at higher scales, and many others.
Sobre la docència de les matemàtiques. Curs Kovalevskaya (2018-2019)
Accés obert
6 de nov. 2018
El rector de la Universitat Politècnica de Catalunya, Francesc Torres,i el president del Consell Social, Ramon Carbonell,
presidiran l'acte de reconeixement al professor Pere Pascual, que ha estat guardonat amb el Premi UPC a la Qualitat en la Docència Universitària 2018 en la modalitat de trajectòria docent
presidiran l'acte de reconeixement al professor Pere Pascual, que ha estat guardonat amb el Premi UPC a la Qualitat en la Docència Universitària 2018 en la modalitat de trajectòria docent
Recordando a Sofía Kovalevskaya. Lliçó inaugural Curs Kovalevskaya (2018-2019)
Accés obert
26 de set. 2018
Presentació de l'Any Kovalevskaya a l'FME
Com ja va sent costum des de fa 15 anys, l'FME dedica el curs acadèmic a la figura d'un prestigiós científic. Enguany s'ha triat la matemàtica russa Sofia Kovalevlskaya (Moscou 15 de gener de 1850 - Estocolm 10 de febrer de 1891). Les seves investigacions se centren en l'anàlisi matemàtica, el seu nom ha passat a la història pel Teorema de Cauchy-Kovaleskaya. La seva especialització, per la qual cosa en la seva època va ser coneguda a tot Europa, era la teoria de funcions abelianes. El seu treball sobre els anells de Saturn representa la seva aportació a la matemàtica aplicada. Important també va ser va ser la seva investigació sobre la rotació d'un sòlid al voltant d'un punt fix pel qual va obtenir el Premi Bordin de l'Acadèmia de Ciències de París, així com també va ser la primera dona professora en un centre universitari europeu, a la Universitat d'Estocolm.
La Biblioteca FME fa un recull bibliogràfic i documental del matemàtic del curs per complementar i donar suport a les activitats que la facultat realitza al llarg del curs de cada matemàtic.
Nos acercaremos a la vida y la obra de Sofia Kovalevskaya –matemática, escritora, feminista, nihilista y revolucionaria– a través de lo que otras personas –o ella misma– dijeron de ella. Al estilo del escritor Georges Perec en su libro Je me souviens –Me acuerdo– conoceremos a esta genial mujer a través de citas, de recuerdos de personas que se cruzaron con ella y, en general, la apreciaron y admiraron. Las citas, los extractos de cartas y las palabras en las que nos basaremos provienen de matemáticos, de escritoras y escritores, de científicas y científicos o de familiares que conocieron diferentes facetas de su personalidad.
Com ja va sent costum des de fa 15 anys, l'FME dedica el curs acadèmic a la figura d'un prestigiós científic. Enguany s'ha triat la matemàtica russa Sofia Kovalevlskaya (Moscou 15 de gener de 1850 - Estocolm 10 de febrer de 1891). Les seves investigacions se centren en l'anàlisi matemàtica, el seu nom ha passat a la història pel Teorema de Cauchy-Kovaleskaya. La seva especialització, per la qual cosa en la seva època va ser coneguda a tot Europa, era la teoria de funcions abelianes. El seu treball sobre els anells de Saturn representa la seva aportació a la matemàtica aplicada. Important també va ser va ser la seva investigació sobre la rotació d'un sòlid al voltant d'un punt fix pel qual va obtenir el Premi Bordin de l'Acadèmia de Ciències de París, així com també va ser la primera dona professora en un centre universitari europeu, a la Universitat d'Estocolm.
La Biblioteca FME fa un recull bibliogràfic i documental del matemàtic del curs per complementar i donar suport a les activitats que la facultat realitza al llarg del curs de cada matemàtic.
Nos acercaremos a la vida y la obra de Sofia Kovalevskaya –matemática, escritora, feminista, nihilista y revolucionaria– a través de lo que otras personas –o ella misma– dijeron de ella. Al estilo del escritor Georges Perec en su libro Je me souviens –Me acuerdo– conoceremos a esta genial mujer a través de citas, de recuerdos de personas que se cruzaron con ella y, en general, la apreciaron y admiraron. Las citas, los extractos de cartas y las palabras en las que nos basaremos provienen de matemáticos, de escritoras y escritores, de científicas y científicos o de familiares que conocieron diferentes facetas de su personalidad.
The level set method for motion by mean curvature
Accés obert
18 de maig 2018
Tobias Colding, born in Copenhagen, received his Ph.D. in 1992 at the University of Pennsylvania under Chris Croke. Since 2005 Colding has been a professor of mathematics at MIT. He was on the faculty at the Courant Institute of New York University in various positions from 1992 to 2008.
In the early stage of his career, Colding did impressive work on manifolds with bounds on Ricci curvature. In 1998, he gave an invited address to the ICM in Berlin. He began coauthoring with William P. Minicozzi at this time: first on harmonic functions and later on minimal surfaces. In 2010 Tobias H. Colding received the Oswald Veblen Prize in Geometry together with William Minicozzi II for their profound work on minimal surfaces.
Since 2008 he has been a Fellow of the American Academy of Arts and Sciences, and since 2006 a foreign member of the Royal Danish Academy of Sciences and Letters, and also since 2006 an honorary professor of University of Copenhagen, Denmark.
Many physical phenomema lead to tracking moving fronts whose speed depends on the curvature. The "level set method" has been tremendously succesful for this, but the solutions are typically only continuous. We will discuss results that show that the level set flow has twice differentiable solutions. This is optimal. These analytical questions crucially rely on understanding the underlying geometry. The proofs draws inspiration from real algebraic geometry and the theory of analytical functions.
In the early stage of his career, Colding did impressive work on manifolds with bounds on Ricci curvature. In 1998, he gave an invited address to the ICM in Berlin. He began coauthoring with William P. Minicozzi at this time: first on harmonic functions and later on minimal surfaces. In 2010 Tobias H. Colding received the Oswald Veblen Prize in Geometry together with William Minicozzi II for their profound work on minimal surfaces.
Since 2008 he has been a Fellow of the American Academy of Arts and Sciences, and since 2006 a foreign member of the Royal Danish Academy of Sciences and Letters, and also since 2006 an honorary professor of University of Copenhagen, Denmark.
Many physical phenomema lead to tracking moving fronts whose speed depends on the curvature. The "level set method" has been tremendously succesful for this, but the solutions are typically only continuous. We will discuss results that show that the level set flow has twice differentiable solutions. This is optimal. These analytical questions crucially rely on understanding the underlying geometry. The proofs draws inspiration from real algebraic geometry and the theory of analytical functions.