Sèrie: FME Jornades del matemàtic/a del curs

15 de febr. 2006

Les disquisicions aritmètiques de Gauss. Jornada Gauss (Curs 2005-2006)

Accés obert
15 de febr. 2006
Aquesta conferència presenta un apropament a l’obra Disquisicions
aritmètiques, que C. F. Gauss publicà l’any 1801, quan comptava
24 anys. En una primera part, de caire històric, s’exposen les
circumstàncies que van concórrer en la seva elaboració. En una
segona part s’ofereix una visió del seu contingut, acompanyada
d’algunes reflexions sobre la seva influència posterior.

Johann Carl Friedrich Gauss. Jornada Gauss (Curs 2005-2006)

Accés obert
15 de febr. 2006
Una apreciació de la figura científica de Gauss i el seu temps

Gauss y la estadística. Jornada Gauss (Curs 2005-2006)

Accés obert
15 de febr. 2006
Depués de considerar brevemente la polémica de Gauss con Legendre
a propósito de la autoría del método de los mínimos cuadrados,
se hace una exposición de dicho método, insistiendo en las
aportaciones estadísticas de Gauss al mismo, distinguiendo entre
la “Primera Aproximación de Gauss” (1809), en que supone la normalidad
de los errores de observación y la “Segunda Aproximación
de Gauss” (1821), en que restringe la clase de estimadores a las funciones
lineales de las observaciones y suprime la normalidad de los
errores. En la primera aproximación, el tratamiento es inferencial,
en la segunda es un tratamiento de Teoría de la Decisión.

Gauss i la geometria. Jornada Gauss (Curs 2005-2006)

Accés obert
15 de febr. 2006
Descripció dels principals treballs de Gauss sobre geometria i les seves repercussions posteriors.

Gauss i els polígons. Jornada Gauss (Curs 2005-2006)

Accés obert
15 de febr. 2006
Per copsar el llegat de Gauss, cal tenir en compte què
va fer, naturalment, però també què va deixar als altres per fer.
En aquest article expositiu, mostrem aquest fet en el cas de la
constructibilitat amb regle i compàs dels polígons regulars a la
circumferència i a la lemniscata. Gauss va provar (1796) que el
polígon regular de n costats es pot construir amb regle i compàs
si els factors primers senars de n són primers de Fermat diferents.
També va conjecturar que aquesta condició era necessària, la qual
cosa fou demostrada per Wantzel el 1836. Una nota “insinuant” a
les seves Disquisitiones Mathematicae va propiciar que Abel trobés
(1828) el mateix resultat per al cas dels polígons regulars de la
lemniscata; en aquest cas, el recíproc fou provat per Rosen el 1981.

9 de febr. 2005

L'equació d'Einstein de la relativitat general i la seva relació amb l'equació d'ona. Jornada Einstein (Curs 2004-2005)

Accés obert
9 de febr. 2005
"La conferència tracta els punts següents: les nocions de relativitat especial a l’espai de Minkowski; els fonaments de la relativitat general i equació d’Einstein; la relació de l’equació d’Einstein amb l’equació d’ona clàssica; i breus pinzellades de la meva recerca personal en aquest camp".

Geometría de Lorentz : de lenguaje a herramienta básica en relatividad general. Jornada Einstein (Curs 2004-2005)

Accés obert
9 de febr. 2005
"Desde que Einstein extendió el espacio-tiempo de Lorentz-Minkowski a una variedad de Lorentz curvada para modelar campos gravitatorios no nulos, la Geometría de Lorentz, en su aspecto local, ha sido la herramienta fundamental en esta rama de la Física..."

Einstein y las teorías de campos unificados. Jornada Einstein (Curs 2004-2005)

Accés obert
9 de febr. 2005
La conferencia explica la unificació de la teoria del camp de la gravitació i la teoria de camp electromagnètic "Sería un gran paso adelante unificar en un simple esquema los campos gravitatorios y electromagnéticos. Sería un remate satisfactorio de la Época de la física teórica comenzada por Faraday y Maxwell" [Einstein, 1920].

Del efecto fotoeléctrico (1905) a la condensación de Bose-Einstein (1925) : un curioso ejemplo de simbiosis en el desarrollo de teorías físicas. Jornada Einstein (Curs 2004-2005)

Accés obert
9 de febr. 2005
La conferencia iene como objetivo analizar por una parte el papel jugado por las ideas estadísticas en el nacimiento y desarrollo de las primeras ideas cuánticas. Pero, además, trataremos de poner de manifiesto que la propia física estadística recibió fuertes impulsos en su desarrollo, como consecuencia de su participación en la aventura cuántica

29 de gen. 2004

Poincaré, pensador de la matemática. Jornada Poincaré (Curs 2003-2004)

Accés obert
29 de gen. 2004
Hay matemáticos que parecen hacer, únicamente, matemática porque no divulgan su pensamiento acerca de lo que hacen -caso Hermite-. Poincaré piensa en torno a lo que hace y lo divulga, lo hace público. En ese pensar llega a la convicción de que hay principios regulativos como la inducción completa, la estructura de grupo, las nociones topológicas... que posibilitan la creación matemática, obra de la razón. Creación matemática ligada siempre a los problemas que plantea el conocimiento de la physis, no encerrada en torre de marfil.

Poincaré i l'aritmètica. Jornada Poincaré (Curs 2003-2004)

Accés obert
29 de gen. 2004
Les contribucions a l'aritmètica degudes a Poincaré comprenen una trentena de publicacions, recopilades principalment en els volums II i V de les seves obres. En elles, Poincaré remarcà la importància dels grups fuchsians aritmètics i de les funcions fuchsianes aritmètiques en l'estudi de les equacions algebraiques. Els treballs Les funcions fuchsianes i l'aritmètica, de 1887, i Sobre les propietats aritmètiques de les corbes algebraiques, de 1901, foren especialment influents. En la conferència, presentarem un apropament a aquests textos i explicarem l'evolució posterior d'algunes de les idees que hi figuren.

La Conjetura de Poincaré: un siglo de investigación. Jornada Poincaré (Curs 2003-2004)

Accés obert
29 de gen. 2004
Poincaré afirmó, y tras no encontrar una prueba, preguntó lo que se conoce como Conjetura de Poincaré: Toda variedad tridimensional cerrada y simplemente conexa es la esfera. La búsqueda de una demostración de este resultado ha dado lugar a una fecunda investigación en topología a lo largo de todo el siglo XX. De su importancia da idea el hecho de haber sido considerada como uno de los siete problemas del Milenio por el Clay Mathematical Institute, estableciendo un premio de un millón de dolares para quien lo resuelva. Los topólogos consideramos este problema como parte del problemade clasificación de todas las 3 variedades. Desde los años ochenta, en que aparece la conjetura- teorema de Geometrización de Thurston, que implica la solución positiva de la Conjetura de Poincaré, las técnicas geométricas se incorporan al estudio de variedades tridimensionales, y parece que este enfoque ha hecho que la Conjetura se convierta, tras un siglo de vida, en Teorema.